A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid

نویسندگان

  • J. M. López-Herrera
  • Stéphane Popinet
  • M. A. Herrada
چکیده

In the present study we propose a charge-conservative scheme to solve twophase electrohydrodynamic (EHD) problems using the Volume-of-Fluid (VOF) method. EHD problems are usually simplified by assuming that the fluids involved are purely dielectric (insulators) or purely conducting. Gases can be considered as perfect insulators but pure dielectric liquids do not exist in nature and insulating liquids have to be approximated using the “Taylor– Melcher leaky dielectric model” [1, 2] in which a leakage of charge through the liquid due to ohmic conduction is allowed. It is also a customary assumption to neglect the convection of charge against the ohmic conduction. The scheme proposed in this article can deal with any EHD problem since it does not rely on any of the above simplifications. An unrestricted EHD solver requires not only to incorporate electric forces in the Navier-Stokes equations, but also to consider the charge migration due to both conduction and convection in the electric charge conservation equation [3]. The conducting or insulating nature of the fluids arise on their own as a result of their electric and fluid mechanical properties. The EHD solver has been built as an extension to Gerris, a Free Software solver for the solution of incompressible fluid motion using an adaptive VOF method on octree meshes developed by Popinet [4, 5]. ∗Corresponding author Email addresses: [email protected] (J. M. López-Herrera), [email protected] (S. Popinet), [email protected] ( M. A. Herrada) Preprint submitted to Journal of Computational Physics November 30, 2010

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of coupling on turbulent gas-particle boundary layer flows at borderline volume fractions using kinetic theory

This study is concerned with the prediction of particles’ velocity in a dilute turbulent gas-solidboundary layer flow using a fully Eulerian two-fluid model. The closures required for equationsdescribing the particulate phase are derived from the kinetic theory of granular flows. Gas phaseturbulence is modeled by one-equation model and solid phase turbulence by MLH theory. Resultsof one-way and...

متن کامل

Comparison of the hyperbolic range of two-fluid models on two-phase gas -liquid flows

In this paper, a numerical study is conducted in order to compare hyperbolic range of equations of isotherm two-fluid model governing on two-phase flow inside of pipe using conservative Shock capturing method. Differential equations of the two-fluid model are presented in two forms (i.e. form I and form II). In forms I and II, pressure correction terms are hydrodynamic and hydrostatic, respecti...

متن کامل

Two-phase electrohydrodynamic simulations using a volume-of-fluid approach: A comment

A numerical methodology to simulate two-phase electrohydrodynamic flows under the volume-of-fluid paradigm is proposed. The electric force in such systems acts only at the interface and is zero elsewhere in the two fluids. Continuum surface force representations are derived for the electric field force in a system of dielectric–dielectric and conducting–conducting fluids. On the basis of analyt...

متن کامل

Conservative Level Set/Ghost Fluid Method for Simulating Primary Atomization

This paper presents a novel approach for simulating incompressible two-phase flows by combining a conservative level set technique and the ghost-fluid method. Following the ideas of Olsson and Kreiss (2005), the liquid-gas interface is localized using a hyperbolic tangent level set that is transported and reinitialized using fully conservative numerical schemes. Mass conservation issues are gre...

متن کامل

Application of the Schwarz-Christoffel Transformation in Solving Two-Dimensional Turbulent Flows in Complex Geometries

In this paper, two-dimensional turbulent flows in different and complex geometries are simulated by using an accurate grid generation method. In order to analyze the fluid flow, numerical solution of the continuity and Navier-Stokes equations are solved using CFD techniques. Considering the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid by means of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 230  شماره 

صفحات  -

تاریخ انتشار 2011